Geodesic orbit metrics in a class of homogeneous bundles over real and complex Stiefel manifolds

نویسندگان

چکیده

Geodesic orbit spaces (or g.o. spaces) are defined as those homogeneous Riemannian $$(M=G/H,g)$$ whose geodesics orbits of one-parameter subgroups G. The corresponding metric g is called a geodesic metric. We study the form (G/H, g), such that G one compact classical Lie groups $${{\,\mathrm{SO}\,}}(n)$$ , $$\mathrm{U}(n)$$ and H diagonally embedded product $$H_1\times \cdots \times H_s$$ where $$H_j$$ same type This class includes spheres, Stiefel manifolds, Grassmann manifolds real flag manifolds. present work contribution to g) with semisimple.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homogeneous Einstein metrics on Stiefel manifolds

A Stiefel manifold VkR n is the set of orthonormal k-frames inR, and it is diffeomorphic to the homogeneous space SO(n)/SO(n−k). We study SO(n)-invariant Einstein metrics on this space. We determine when the standard metric on SO(n)/SO(n−k) is Einstein, and we give an explicit solution to the Einstein equation for the space V2R.

متن کامل

Notes on homogeneous vector bundles over complex flag manifolds

Let P be a parabolic subgroup of a semisimple complex Lie group G defined by a subset Σ of simple roots of G, and let Eφ be a homogeneous vector bundle over the flag manifold G/P corresponding to a linear representation φ of P . Using Bott’s theorem, we obtain sufficient conditions on φ in terms of the combinatorial structure of Σ for some cohomology groups of the sheaf of holomorphic sections ...

متن کامل

a class of lift metrics on finsler manifolds

in this paper, we are going to study the g-natural metrics on the tangent bundle of finslermanifolds. we concentrate on the complex and kählerian and hermitian structures associated with finslermanifolds via g-natural metrics. we prove that the almost complex structure induced by this metric is acomplex structure on tangent bundle if and only if the finsler metric is of scalar flag curvature. t...

متن کامل

Homogeneous bundles over abelian varieties

We obtain characterizations and structure results for homogeneous principal bundles over abelian varieties, that generalize work of Miyanishi and Mukai on homogeneous vector bundles. For this, we rely on notions and methods of algebraic transformation groups, especially observable subgroups and anti-affine groups.

متن کامل

Circle bundles over 4-manifolds

Every 1-connected topological 4-manifold M admits a S1-covering by #r−1S 2 × S3, where r =rankH2(M ; Z). 2000 Mathematical Subject Classification: 57M50(55R25)

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometriae Dedicata

سال: 2021

ISSN: ['0046-5755', '1572-9168']

DOI: https://doi.org/10.1007/s10711-021-00639-6